Compact and extremally disconnected spaces

نویسنده

  • Bhamini M. P. Nayar
چکیده

Viglino defined a Hausdorff topological space to be C-compact if each closed subset of the space is anH-set in the sense of Velǐcko. In this paper, we study the class of Hausdorff spaces characterized by the property that each closed subset is an S-set in the sense of Dickman and Krystock. Such spaces are calledC-s-compact. Recently, the notion of strongly subclosed relation, introduced by Joseph, has been utilized to characterize C-compact spaces as those with the property that each function from the space to a Hausdorff space with a strongly subclosed inverse is closed. Here, it is shown that C-s-compact spaces are characterized by the property that each function from the space to a Hausdorff space with a strongly sub-semiclosed inverse is a closed function. It is established that this class of spaces is the same as the class of Hausdorff, compact, and extremally disconnected spaces. The class of C-s-compact spaces is properly contained in the class of C-compact spaces as well as in the class of S-closed spaces of Thompson. In general, a compact space need not be C-s-compact. The product of two C-s-compact spaces need not be C-s-compact.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Homogeneous Extremally Disconnected Countably Compact Space

It is well known that no infinite homogeneous space is both compact and extremally disconnected. (Since there are infinite compact homogeneous spaces and infinite extremally disconnected homogeneous spaces, it is the combination of compactness and extremal disconnectedness that brings about this result.) The following question then arises naturally: How “close to compact” can a homogeneous, ext...

متن کامل

Guram Bezhanishvili , Nick Bezhanishvili , Joel Lucero - Bryan and Jan van Mill S 4 . 3 and hereditarily extremally disconnected spaces

Research Article Guram Bezhanishvili, Nick Bezhanishvili, Joel Lucero-Bryan and Jan van Mill S4.3 and hereditarily extremally disconnected spaces Abstract: Themodal logic S4.3 de nes the class of hereditarily extremally disconnected spaces (HED-spaces). We construct a countable HED-subspaceX of the Gleason cover of the real closed unit interval [0, 1] such that S4.3 is the logic ofX.

متن کامل

On I-extremally Disconnected Spaces

We have introduced and investigated the notion of I-extremal disconnectedness on ideal topological spaces. First, we found that the notions of extremal disconnectedness and I-extremal disconnectedness are independent of each other. About the letter one, we observed that every open subset of an I-extremally disconnected space is also an I-extremally disconnected space. And also, in extremally di...

متن کامل

A COMPACT F-SPACE NOT CO-ABSOLUTE WITH PN-fV

It will be convenient to call a space X a ParoviZenko space if (cy) X is a zero-dimensional compact space without isolated points, (p) every two disjoint open F,-sets have disjoint closures, and (y) every nonempty GG-set in X has non-empty interior. Compact spaces satisfying (p) are usually called F-spaces, while spaces satisfying (y) are called almost-P spaces. Examples of F-spaces are the ext...

متن کامل

Random forcing and ( S ) and ( L ) ∗

In this article I will analyze the impact of forcing with a measure algebra on various topological statements. In particular our interest will focus on the study of hereditary separability and the hereditary Lindelöf property in the classes of compact, extremally disconnected, and cometrizable spaces.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Int. J. Math. Mathematical Sciences

دوره 2004  شماره 

صفحات  -

تاریخ انتشار 2004